FIBERS SITE GROUP

April 11, 2016

Via Email Electronic Copy

Adalberto Bosque, PhD, MBA, REM, CEA Response and Remediation Branch U.S Environmental Protection Agency City View Plaza II - Suite 7000 48 RD, 165 Km. 1.2 Guaynabo, PR 00968-8069

Subject: RD/RA Monthly Report – March 2016

Fibers Public Supply Wells Site

Guayama, Puerto Rico

Dear Mr. Bosque:

On behalf of the Fibers Public Supply Wells Site Settling Defendants, we are submitting the attached RD/RA Monthly Report prepared pursuant to the Consent Decree (Civil Action No. 92-2486) in the matter of *Unites States v. Anaquest Caribe, Inc. et al*, Section IX, Paragraph 30, Reporting Requirements.

Please feel free to contact Mr. James Kirschner of ARCADIS at (602) 797-4519 or me at (724) 544-4874 if you have any questions or comments regarding this submittal.

Sincerely,

Joe Biss, CHMM

Fibers Site Group Project Coordinator

EHS Support LLC

Copies:

Chief, New York/Caribbean Superfund Branch, Attn. Mel Hauptman- via email only

Ms. Evelyn Rivera-Ocasio, Assistant Regional Counsel – Caribbean Programs – via email only

Chief, Environmental Enforcement Division, U.S. Department of Justice (DOJ #90-11-2-768)

State Remedial Project Manager, Puerto Rico Environmental Quality Board

Ms. Katherine Mishkin, Hydrogeologist, USEPA Superfund Technical Support Section – via email only

Ms. Enid Diaz, Departmento de Recursos Naturales y Ambientales

Mr. Jorge Morales, PRIDCO - via email only

Mr. Joel Melendez Rodriguez, PRIDCO - via email only

Ms. Ana Palou Balsa, PRIDCO - via email only

Mr. Dan Vineyard, Jackson Walker- via email only

James Kirschner, Arcadis - via email only

RD/RA Monthly Report – March 2016 Fibers Public Supply Wells Superfund Site Guayama, Puerto Rico

(a) Description of actions which have been taken toward achieving compliance with this Decree.

Fibers Air Stripping System

The Fibers groundwater extraction and treatment system (GWETS) was operational for approximately 75% of the time during March 2016. The GWETS had two automated shut downs due to power outages, and was then started at the Site the next day. In addition, it had five shut downs due to equipment faults and maintenance.

A summary of the daily treatment system operating records is presented in Table 1. The GWETS average flow rates are depicted on Figure 1. The GWETS operated at an average flow rate of 200 gallons per minute (gpm) and treated approximately 9.3 million gallons of water in March 2016. To date (since May 1999), approximately 3.06 billion gallons of water have been treated at the Fibers Site

(b) Summary of all sampling results and tests, and all other data received or generated by Settling Defendants.

Groundwater influent and effluent samples were collected and analyzed in March 2016. A summary of the March 2016 GWETS laboratory analytical results are provided in Table 2. A summary of influent groundwater concentrations of tetrachloroethene (PCE) and total haloethers from the GWETS is depicted on Figures 2 and 3, respectively.

Arcadis U.S. Inc. (Arcadis) performed a data quality assessment (validation) of the laboratory analytical results reported by Pace Analytical Services, Inc. Results are summarized in the Data Review Report included as Attachment 1. A copy of the chain of custody and annotated sample analysis data sheets are provided as an attachment to the Data Review Report. A copy of the complete laboratory analytical report is provided as Attachment 2. A copy of the field notes documenting sample collection information, individual flow rates at the three groundwater extraction wells and treatment system parameters is provided as Attachment 3.

(c) List of all work plans, plans and other deliverables completed and submitted.

None for this reporting period

(d) Description of all actions, including, but not limited to, data collection and implementation of work plans, which are scheduled for the next six weeks.

An Operations, Maintenance, and Monitoring Manual is anticipated to be submitted to the United States Environmental Protection Agency (USEPA) in April 2016.

A Notice of Completion Report, with stamped engineering as-built construction drawings, is anticipated to be submitted to the USEPA in May 2016.

The first semi-annual groundwater monitoring and sampling event of 2016 will commence in April 2016. Notification of the proposed sampling activity was submitted to USEPA on March 4, 2016 via email.

Environmental Resource Technologies (ERTEC) completed the second phase of the subsurface soil investigation at the Baxter-Guayama facility on the Fibers Site in October 2015. Upon

completion of the data validation, a summary of results from ERTEC's Phase 2 subsurface investigation will be included in a subsequent monthly report.

(e) Information regarding the percentage completion, unresolved delays encountered or anticipated.

Construction Activities – 100% complete.

System Start-Up – 100% complete.

Start-Up Performance Monitoring – 100% complete.

Long-Term Operation & Maintenance Period – In progress.

(f) List of any modification to work plans or other schedules the Settling Defendants have proposed.


None.

(g) Description of activities undertaken in support of the Community Relations Plan.

No support activities have been requested for the next planning period.

(h) Actions undertaken to address outside parties concerns.

No concerns from outside parties were encountered during this reporting period.

Table 1 Summary of Daily Treatment System Operating Records - March 2016 Fibers Public Supply Wells Superfund Site Guayama, Puerto Rico

Recording Date	Influent Flow (gpm) 1	Effluent Flow (gpm) ²	RW-2 (gpm) ³	RW-4 (gpm) ⁴	RW-5 (gpm) ⁵	pH ⁶	Comments
3/1/2016	131	140	54	59	20	8.0	System down. Installation of air blower filter adapter.
3/2/2016	125	126	55	55	18	8.0	Installation of air blower filter adapter. Start up system.
3/3/2016	318	326	125	145	48	8.1	
3/4/2016	308	316	113	145	48	8.0	
3/5/2016	308	323	119	145	48	8.0	
3/6/2016	304	332	114	145	48	8.0	
3/7/2016	196	203	76	92	30	8.0	System down due to DPIT-401 high alarm (clogged sump filter).
3/8/2016	157	154	67	73	25	8.0	Changed sump filter. Started system.
3/9/2016	313	330	120	145	48	8.0	
3/10/2016	149	163	56	74	25	8.0	Power loss. System down.
3/11/2016	220	224	86	103	34	8.0	Start up system.
3/12/2016	311	335	120	145	48	8.0	
3/13/2016	313	323	120	145	48	8.0	
3/14/2016	315	327	120	146	47	8.0	
3/15/2016	309	318	120	145	47	8.0	
3/16/2016	116	119	46	55	18	8.0	Transfer pump maintenance.
3/17/2016	0	0	0	0	0	8.0	GWETS maintenance. TP-202A down due to broken O-ring.
3/18/2016	86	87	36	36	19	8.1	GWETS maintenance. Started system.
3/19/2016	196	205	82	84	45	8.2	
3/20/2016	194	209	61	85	45	8.1	
3/21/2016	164	171	60	67	38	8.1	Repair biocide pipe.
3/22/2016	206	203	65	77	45	8.1	
3/23/2016	196	205	76	81	45	8.1	
3/24/2016	194	203	65	80	45	8.1	
3/25/2016	201	203	72	82	45	8.1	
3/26/2016	191	200	75	81	45	8.1	
3/27/2016	95	101	27	43	23	8.1	System down. TP-201A jammed
3/28/2016	138	133	52	66	22	8.1	Removed scale build up from Tourist 201A. Started system.
3/29/2016	294	287	110	140	48	8.0	
3/30/2016	49	46	20	25	9	7.9	System down due to power loss
3/31/2016 Monthly	113	111	43	53	18	8.0	Started system.
Average	200	207	76	91	35	8.1	

Notes:

Flow rates are 24-hour daily average.

gpm = gallons per minute.

¹ = Recorded from instrument FIT-101.

² = Recorded from instrument FIT-301.

³ = Recorded from instrument RW2 FIT.

 $^{^{4}}$ = Recorded from instrument RW4 FIT.

⁵ = Recorded from instrument RW5 FIT.

⁶ = Recorded from instrument pHIT-201A.

Table 2 Summary of Treatment System Laboratory Analytical Results March 2016 Fibers Public Supply Wells Superfund Site Guayama, Puerto Rico

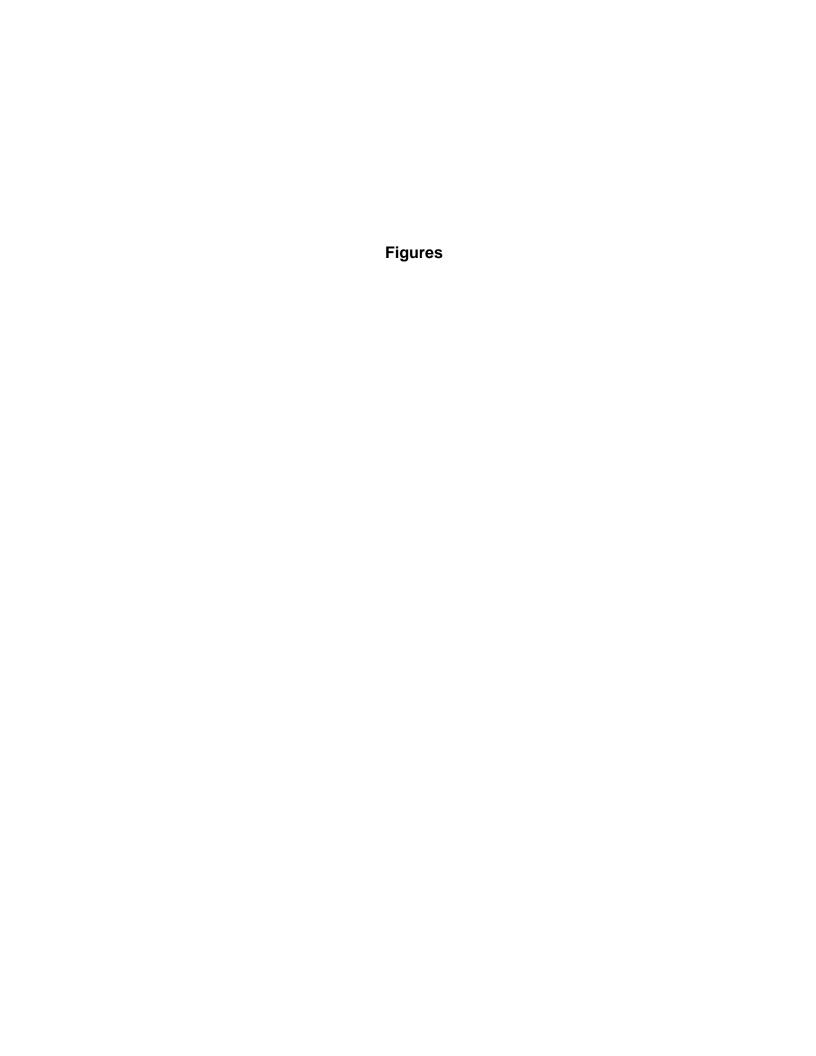
Fibers Groundwater Extraction and Treatment System

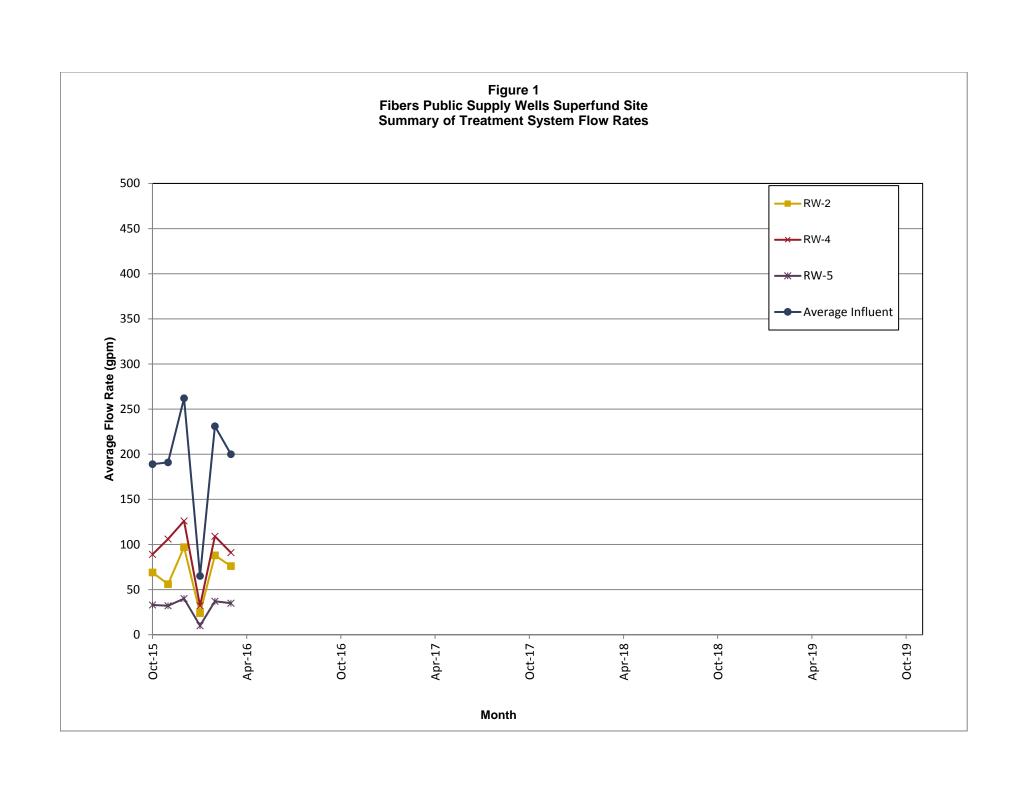
Laboratory analytical results for water samples collected at the influent and effluent sample tap locations from the Fibers Groundwater Extraction and Treatment System on March 3, 2016 are presented below. The system average effluent flow rate at the time the samples were collected was 335 gallons per minute (gpm). Sample results indicate that the treatment system is operating in compliance with operating parameters pursuant to the Consent Decree.

		VOC (µ	g/L)	
		Sample	e ID	
Compound	EFF-20160303	EFFDUP-20160303	INF-20160303	TB-20160303
Tetrachloroethene	ND	ND	7.1	ND
Enflurane	ND	ND	2.0	ND
Haloether 229	ND	ND	39.6	ND
Haloether 406	ND	ND	1.6	ND
Haloether 508	ND	ND	67.5	ND
Haloether 528	ND	ND	ND	ND
Halomar	ND	ND	1.4	ND
Isoflurane	ND	ND	153	ND
Total Haloethers	ND	ND	265	ND
Acetone	19.1	26.6	10.0	ND
Other VOC	ND	ND	ND	ND

Notes:

VOC = volatile organic compounds.


μg/L = micrograms per liter.


EFF = effluent sample.

EFFDUP = effluent duplicate sample. INF = influent sample.

TB = trip blank.

ND = not detected at or above laboratory reporting limit.

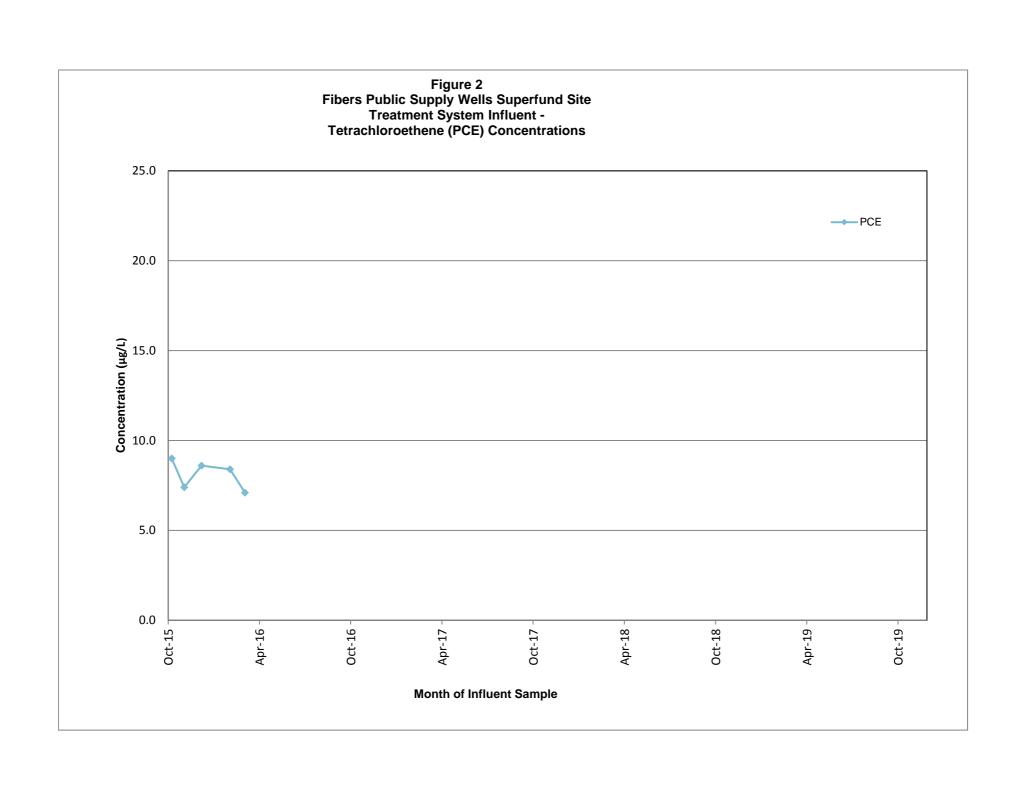


Figure 3 Fibers Public Supply Wells Superfund Site Treatment System Influent -**Total Haloethers Concentrations** 350 300 250 Concentration (µg/L) 100 Total Haloethers 50 0 Apr-16 -Apr-18 Oct-15 Oct-17 Month of Influent Sample

Attachment 1 Data Review Report

Fibers Group

Data Review

GUAYAMA, PUERTO RICO

Volatiles Analyses

SDG #2033391 Analyses Performed By: Pace Analytical Services, Inc. New Orleans, Louisiana

Report: #25350R Review Level: Tier II

Project: CO001911.0003.1605A

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #2033391 for samples collected in association with the Fibers Group Site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

			Sample	Parent		Analysis			
Sample ID	Lab ID	Matrix	Collection Date	Sample	voc	svoc	TPH	MET	MISC
TB-20160303	2033391001	Water	03/03/2016		Х				
INF-20160303	2031974002	Water	03/03/2016		Х				
EFF-20160303	2031974003	Water	03/03/2016		Х				
EFF DUP-20160303	2031974004	Water	03/03/2016	EFF-20160303	Х				

Note:

1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location EFF-20160303.

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. QC serves to increase confidence in data but any value potentially contains error.	Strict

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2 s.u.
377-040 0200	Soil	48 hours from collection to extraction and 14 days from extraction to analysis	Cool to <6 °C.

s.u. Standard units

All samples were analyzed within acceptable holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the RL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
EEE 20160202	Styrene	<10%	<10%
EFF-20160303	m&p-Xylene	<ll but="">10%</ll>	<ll but="">10%</ll>

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification	
> the upper central limit (LIL)	Non-detect	No Action	
> tile upper control limit (OL)	Detect	J	
the lower central limit (LL) but > 100/	Non-detect	UJ	
< tile lower control limit (LL) but > 10%	Detect	J	
< 10%	Non-detect J R		
< 10%	Detect	J	
Parent sample concentration > four times the MS/MSD	Detect	No Action	
spiking solution concentration.	Non-detect Non-detect Non-detect Non-detect	NO ACION	

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
EFF-20160303/ EFF DUP-20160303	Acetone	19.1	26.6	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260	Rep	orted	Performance Acceptable		Not
	No Yes Xes Xes	Required			
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/MS)			
Tier II Validation					
Holding times		X		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment/Field blanks					Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD Precision RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х

%R Percent recovery
RPD Relative percent difference
%RSD Relative standard deviation
%D Percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: March 21, 2016

PEER REVIEW: Dennis Capria

DATE: March 24, 2016

CHAIN OF CUSTODY/ ANNOTATED SAMPLE ANALYSIS DATA SHEETS

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: TB-20160303	Lab ID: 20	33391001	Collected: 03/03/	16 00:00	Received:	03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV HALOETHERS	Analytical Me	thod: EPA 50	030B/8260					
Acetone	ND	ug/L	4.0	1		03/16/16 16:20	67-64-1	
Acrolein	ND	ug/L	8.0	1		03/16/16 16:20	107-02-8	
Acrylonitrile	ND	ug/L	4.0	1		03/16/16 16:20	107-13-1	
Benzene	ND	ug/L	1.0	1		03/16/16 16:20	71-43-2	
Bromodichloromethane	ND	ug/L	1.0	1		03/16/16 16:20	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/16/16 16:20	75-25-2	
Bromomethane	ND	ug/L	1.0	1		03/16/16 16:20	74-83-9	
-Butanone (MEK)	ND	ug/L	2.0	1		03/16/16 16:20	78-93-3	
arbon disulfide	ND	ug/L	1.0	1		03/16/16 16:20	75-15-0	
arbon tetrachloride	ND	ug/L	1.0	1		03/16/16 16:20	56-23-5	
chlorobenzene	ND	ug/L	1.0	1		03/16/16 16:20	108-90-7	
chloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
Chloroform	ND	ug/L	1.0	1.		03/16/16 16:20		
hloromethane	ND	ug/L	1.0	1		03/16/16 16:20		
Dibromochloromethane	ND	ug/L	1.0	1		03/16/16 16:20		
Dibromomethane	ND	ug/L	1.0	1		03/16/16 16:20	74-95-3	
,1-Dichloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
.2-Dichloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
,1-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:20		
s-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:20		
ans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:20		
,2-Dichloropropane	ND	ug/L	1.0	1		03/16/16 16:20		
is-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 16:20		
ans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 16:20		
nflurane	ND	ug/L	1.0	1		03/16/16 16:20		
thylbenzene	ND	ug/L	1.0	1		03/16/16 16:20		
aloether 229	ND	ug/L	1.0	1		03/16/16 16:20		
laloether 406	ND	ug/L	1.0	1		03/16/16 16:20		
aloether 421	ND	ug/L	1.0	1		03/16/16 16:20		
aloether 427	ND	ug/L	1.0	1		03/16/16 16:20		
aloether 428	ND	ug/L	1.0	1		03/16/16 16:20		
aloether 508	ND	ug/L	1.0	1		03/16/16 16:20		
aloether 528	ND	ug/L	1.0	1		03/16/16 16:20		
alomar	ND	ug/L	1.0	1		03/16/16 16:20		
-Hexanone	ND	ug/L	2.0	1		03/16/16 16:20		
soflurane	ND	ug/L	1.0	1		03/16/16 16:20		
lethoxyflurane	ND	ug/L	1.0	1		03/16/16 16:20		
lethylene Chloride	ND	ug/L	5.0	1		03/16/16 16:20	75-09-2	-B-
-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		03/16/16 16:20		
tyrene	ND	ug/L	1.0	1		03/16/16 16:20		
1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
etrachloroethene	ND	ug/L	1.0	1		03/16/16 16:20		
oluene	ND	ug/L	1.0	1		03/16/16 16:20		
otal Haloether	ND	ug/L	1.0	1		03/16/16 16:20		
1,1-Trichloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
1,2-Trichloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
richloroethene	ND	ug/L	1.0	1		03/16/16 16:20		

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: TB-20160303	Lab ID: 203	3391001	Collected: 03/03/1	6 00:00	Received:	03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Met	nod: EPA 5	030B/8260					
Trichlorofluoromethane	ND	ug/L	1.0	1		03/16/16 16:20	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/16/16 16:20	96-18-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		03/16/16 16:20	76-13-1	
Vinyl chloride	ND	ug/L	1.0	1		03/16/16 16:20	75-01-4	
m&p-Xylene	ND	ug/L	2.0	1		03/16/16 16:20	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/16/16 16:20	95-47-6	
Surrogates								
Toluene-d8 (S)	100	%.	79-119	1		03/16/16 16:20	2037-26-5	
4-Bromofluorobenzene (S)	101	%.	68-124	1		03/16/16 16:20	460-00-4	
Dibromofluoromethane (S)	106	%.	72-126	1		03/16/16 16:20	1868-53-7	
Sample: INF-20160303	Lab ID: 203	3391002	Collected: 03/03/1	6 11:05	Received: (03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Meth	nod: EPA 50	030B/8260					
Acetone	10.0	ug/L	4.0	1		03/16/16 15:44	67-64-1	
Acrolein	ND	ug/L	8.0	1		03/16/16 15:44		
Acrylonitrile	ND	ug/L	4.0	1		03/16/16 15:44		
Benzene	ND	ug/L	1.0	1		03/16/16 15:44		
Bromodichloromethane	ND	ug/L	1.0	1		03/16/16 15:44		
Bromoform	ND	ug/L	1.0	1		03/16/16 15:44		
Bromomethane	ND	ug/L	1.0	1		03/16/16 15:44		
2-Butanone (MEK)	ND	ug/L	2.0	1		03/16/16 15:44		
Carbon disulfide	ND	ug/L	1.0	1		03/16/16 15:44		
Carbon tetrachloride	ND	ug/L	1.0	1		03/16/16 15:44		
Chlorobenzene	ND	ug/L	1.0	1		03/16/16 15:44		
Chloroethane	ND	ug/L	1.0	1		03/16/16 15:44		
Chloroform	ND	ug/L	1.0	1		03/16/16 15:44		
Chloromethane	ND	ug/L	1.0	1		03/16/16 15:44		
Dibromochloromethane	ND	ug/L	1.0	1		03/16/16 15:44		
Dibromomethane	ND	ug/L	1.0	1		03/16/16 15:44		
1,1-Dichloroethane	ND	ug/L	1.0	1		03/16/16 15:44		
1,2-Dichloroethane	ND	ug/L	1.0	1		03/16/16 15:44		
1,1-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:44		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:44	. 4.5077-110	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:44	10.5 5000	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/16/16 15:44		
cis-1,3-Dichloropropene	ND	ug/L	1.0	- 1		03/16/16 15:44		
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 15:44		
Enflurane	2.0	ug/L	1.0	1		03/16/16 15:44		
Ethylbenzene	ND	ug/L	1.0	1		03/16/16 15:44		
Haloether 229	39.6	ug/L	1.0	1		03/16/16 15:44		
Haloether 406	1.6	ug/L	1.0	1		03/16/16 15:44		
Haloether 421	ND.	ug/L	1.0	1		03/16/16 15:44		
I INIOCUTE TE I	ND	ug/L	1.0	1		03/16/16 15:44		

Project:

FIBERS PUBLIC SUPPLY WELLS

Pace Project No.:

2033391

Sample: INF-20160303	Lab ID: 203	3391002	Collected: 03/03/	16 11:05	Received:	03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV HALOETHERS	Analytical Met	hod: EPA 5	030B/8260					
Haloether 428	ND	ug/L	1.0	1		03/16/16 15:44	1	
Haloether 508	67.5	ug/L	1.0	1		03/16/16 15:44	1	
Haloether 528	ND	ug/L	1.0	1		03/16/16 15:44	1	
Halomar	1.4	ug/L	1.0	1		03/16/16 15:44	1 4	
2-Hexanone	ND	ug/L	2.0	1		03/16/16 15:44		
Isoflurane	153	ug/L	1.0	1		03/16/16 15:44		
Methoxyflurane	ND	ug/L	1.0	1		03/16/16 15:44		
Methylene Chloride	ND	ug/L	5.0	1		03/16/16 15:44		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		03/16/16 15:44		
Styrene	ND	ug/L	1.0	1		03/16/16 15:44		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/16/16 15:44		
Tetrachloroethene	7.1	ug/L	1.0	1		03/16/16 15:44		
Toluene	ND	_	1.0	1		03/16/16 15:44		
Total Haloether		ug/L	1.0	1		03/16/16 15:44		
	265	ug/L	1.0	1				
1,1,1-Trichloroethane	ND	ug/L				03/16/16 15:44		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/16/16 15:44		
Trichloroethene	ND	ug/L	1.0	1		03/16/16 15:44		
Trichlorofluoromethane	ND	ug/L	1.0	1		03/16/16 15:44		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/16/16 15:44		
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		03/16/16 15:44		
Vinyl chloride	ND	ug/L	1.0	1		03/16/16 15:44		
m&p-Xylene	ND	ug/L	2.0	1		03/16/16 15:44		
o-Xylene	ND	ug/L	1.0	1		03/16/16 15:44	95-47-6	
Surrogates	12.			4				
Toluene-d8 (S)	101	%.	79-119	1		03/16/16 15:44		
4-Bromofluorobenzene (S)	103	%.	68-124	1		03/16/16 15:44		
Dibromofluoromethane (S)	106	%.	72-126	1		03/16/16 15:44	1868-53-7	
Sample: EFF-20160303	Lab ID: 203	3391003	Collected: 03/03/1	6 11:27	Received: (03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV HALOETHERS	Analytical Meth	nod: EPA 50	030B/8260					-
Acetone	19.1	ug/L	4.0	1		03/16/16 15:26	67-64-1	
Acrolein	ND		8.0	1		03/16/16 15:26		
Acrylonitrile	ND	ug/L ug/L	4.0	1		03/16/16 15:26		
200400467056	ND		1.0	1		03/16/16 15:26		
Benzene Bromodichloromothano		ug/L	1.0	1		03/16/16 15:26		
Bromodichloromethane	ND	ug/L		1				
Bromoform	ND	ug/L	1.0			03/16/16 15:26		
Bromomethane	ND	ug/L	1.0	1		03/16/16 15:26		
2-Butanone (MEK)	ND	ug/L	2.0	1		03/16/16 15:26		
Carbon disulfide	ND	ug/L	1.0	1		03/16/16 15:26		
Carbon tetrachloride	ND	ug/L	1.0	1		03/16/16 15:26		
Chlorobenzene	ND	ug/L	1.0	1		03/16/16 15:26		
Chloroethane	ND	ug/L	1.0	1		03/16/16 15:26		
Chloroform	ND	ug/L	1.0	1		03/16/16 15:26	67-66-3	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.,

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: EFF-20160303	Lab ID: 203	3391003	Collected: 03/03/1	6 11:27	Received:	03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV HALOETHERS	Analytical Met	hod: EPA 5	030B/8260					
Chloromethane	ND	ug/L	1.0	1		03/16/16 15:26	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		03/16/16 15:26	124-48-1	
Dibromomethane	ND	ug/L	1,0	1		03/16/16 15:26	74-95-3	
,1-Dichloroethane	ND	ug/L	1.0	1		03/16/16 15:26	75-34-3	
,2-Dichloroethane	ND	ug/L	1.0	1		03/16/16 15:26	107-06-2	
,1-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:26	75-35-4	
is-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:26	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:26	156-60-5	
,2-Dichloropropane	ND	ug/L	1.0	1		03/16/16 15:26	78-87-5	
sis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 15:26	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 15:26	10061-02-6	
Influrane	ND	ug/L	1.0	1		03/16/16 15:26	13838-16-9	
thylbenzene	ND	ug/L	1.0	1		03/16/16 15:26	100-41-4	
Haloether 229	ND	ug/L	1.0	1		03/16/16 15:26		
Haloether 406	ND	ug/L	1.0	1		03/16/16 15:26		
laloether 421	ND	ug/L	1.0	1		03/16/16 15:26	3	
laloether 427	ND	ug/L	1.0	1		03/16/16 15:26		
laloether 428	ND	ug/L	1.0	1		03/16/16 15:26		
laloether 508	ND	ug/L	1.0	1		03/16/16 15:26		
Haloether 528	ND	ug/L	1.0	1		03/16/16 15:26		
lalomar	ND	ug/L	1.0	1		03/16/16 15:26		
-Hexanone	ND	ug/L	2.0	1		03/16/16 15:26		
soflurane	ND	ug/L	1.0	1		03/16/16 15:26		
Methoxyflurane	ND	ug/L	1.0	1		03/16/16 15:26		
Methylene Chloride	ND	ug/L	5.0	1		03/16/16 15:26		
-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		03/16/16 15:26		
Styrene	ND	ug/L	1.0	4		03/16/16 15:20		M4 R
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/16/16 15:26		
etrachloroethene	ND	ug/L	1.0	1		03/16/16 15:26		
oluene	ND	ug/L	1.0	1		03/16/16 15:26	1650.03.50.0	
otal Haloether	ND	ug/L	1.0	1		03/16/16 15:26		
1,1-Trichloroethane	ND	ug/L	1.0	1		03/16/16 15:26		
,1,2-Trichloroethane	ND		1.0	4		03/16/16 15:26		
richloroethene	ND	ug/L ug/L	1.0	1		03/16/16 15:26	2317373	
richlorofluoromethane	ND	-	1.0	1		03/16/16 15:26		
	ND	ug/L	1.0	1		03/16/16 15:26		
,2,3-Trichloropropane	ND	ug/L	1.0	1				
,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		03/16/16 15:26 03/16/16 15:26		
inyl chloride		ug/L						44
n&p-Xylene	ND	ug/L	2.0	1			179601-23-1	WHY U
-Xylene	ND	ug/L	1.0	1		03/16/16 15:26	95-47-6	
urrogates	97	%.	79-119	1		03/16/16 15:26	2027 26 5	
oluene-d8 (S)								
-Bromofluorobenzene (S)	102	%.	68-124	1		03/16/16 15:26	400-00-4	

Project:

FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: EFF DUP-20160303	Lab ID: 203	3391004	Collected: 03/03/1	6 11:27	Received:	03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Met	nod: EPA 5	030B/8260					
Acetone	26.6	ug/L	4.0	1		03/16/16 16:0:	2 67-64-1	
Acrolein	ND	ug/L	8.0	1		03/16/16 16:03	2 107-02-8	
Acrylonitrile	ND	ug/L	4.0	1		03/16/16 16:03	2 107-13-1	
Benzene	ND	ug/L	1.0	1		03/16/16 16:03	2 71-43-2	
Bromodichloromethane	ND	ug/L	1.0	1		03/16/16 16:03	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/16/16 16:03	2 75-25-2	
Bromomethane	ND	ug/L	1.0	1		03/16/16 16:03	2 74-83-9	
2-Butanone (MEK)	ND	ug/L	2.0	1		03/16/16 16:02	2 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		03/16/16 16:02	2 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		03/16/16 16:02	2 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/16/16 16:03	2 108-90-7	
Chloroethane	ND	ug/L	1.0	1		03/16/16 16:02	2 75-00-3	
Chloroform	ND	ug/L	1.0	1		03/16/16 16:02		
Chloromethane	ND	ug/L	1.0	1		03/16/16 16:02	2 74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		03/16/16 16:02	2 124-48-1	
Dibromomethane	ND	ug/L	1.0	1		03/16/16 16:02	2 74-95-3	
1,1-Dichloroethane	ND	ug/L	1.0	1		03/16/16 16:02	2 75-34-3	
.2-Dichloroethane	ND	ug/L	1.0	1		03/16/16 16:02	2 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:02	2 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:02	2 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:02	2 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/16/16 16:02		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 16:02		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 16:02	2 10061-02-6	
Enflurane	ND	ug/L	1.0	1		03/16/16 16:02	13838-16-9	
Ethylbenzene	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 229	ND	ug/L	1.0	1		03/16/16 16:02	2	
Haloether 406	ND	ug/L	1.0	1		03/16/16 16:02	2	
Haloether 421	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 427	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 428	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 508	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 528	ND	ug/L	1.0	1		03/16/16 16:02		
Halomar	ND	ug/L	1.0	1		03/16/16 16:02		
2-Hexanone	ND	ug/L	2.0	1		03/16/16 16:02		
soflurane	ND	ug/L	1.0	1		03/16/16 16:02		
Methoxyflurane	ND	ug/L	1.0	1		03/16/16 16:02	76-38-0	
Methylene Chloride	ND	ug/L	5.0	1		03/16/16 16:02		
l-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		03/16/16 16:02		
Styrene	ND	ug/L	1.0	1		03/16/16 16:02		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/16/16 16:02		
Tetrachloroethene	ND	ug/L	1.0	1		03/16/16 16:02		
Toluene	ND	ug/L	1.0	1		03/16/16 16:02		
otal Haloether	ND	ug/L	1.0	1		03/16/16 16:02		
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/16/16 16:02		
.1.2-Trichloroethane	ND	ug/L	1.0	1		03/16/16 16:02		
Trichloroethene	ND	ug/L	1.0	an.		03/16/16 16:02		

FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: EFF DUP-20160303	Lab ID: 203	3391004	Collected: 03/03/1	6 11:27	Received: 0	3/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Meth	nod: EPA 50	030B/8260					
Trichlorofluoromethane	ND	ug/L	1.0	1		03/16/16 16:02	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/16/16 16:02	96-18-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		03/16/16 16:02	76-13-1	
Vinyl chloride	ND	ug/L	1.0	1		03/16/16 16:02	75-01-4	
m&p-Xylene	ND	ug/L	2.0	1		03/16/16 16:02	179601-23-1	
o-Xylene	ND	ug/L	1.0	4		03/16/16 16:02	95-47-6	
Surrogates								
Toluene-d8 (S)	94	%.	79-119	1		03/16/16 16:02	2037-26-5	
4-Bromofluorobenzene (S)	101	%.	68-124	1		03/16/16 16:02	460-00-4	
Dibromofluoromethane (S)	106	%.	72-126	1		03/16/16 16:02	1868-53-7	

40#:2033391

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

ALL Q020rev.3,31Mar05 Pace Project Number Cab LD DESTU Towner CFRLLA NY NY ☐ DRINKING WATER N/A N/A SAMPLE CONDITION 1002 DOTHER S.R. o NO N/A N/A N/A Custody (NIA) eurorio SIN eoj uo N/A N/A **Ресеі**ува Page: 3000 REGULATORY AGENCY Do ni qmeT ☐ GROUND WATER DATE TIME 33-16 14:00 3/5/10 85 x M Z Sc □ RCRA Requested Analysis: DATE Signed (mm / OD / m) Millethal OGA HO Filtered (Y/N) ACCEPTED BY / AFFILIATION K E SITE LOCATION 1ertiC □ NPDES Na₂S₂O₃ HOBN HCI HOS OSZH Unpreserved Pace Project Manager. CONTAINERS 03 M 17 SAMPLE TEMP AT COLLECTION SAMPLER NAME AND SIGNATURE TIME 4071 Allevier COMPOSITE END/GRAB 4 17-67-16 1/17 NO 1 TIME 100 C. 107-10/147 RELINQUISHED P.Y / AFFILIATION DATE Pace Profile #: 102 Pace Quote Reference: 3 Invoice Information: 53.02.4L 08-13-16 03-63-16 Company Name 3-05-16 Section C SIGNATURE of SAMPLER DATE PRINT Name of SAMPLE Attention: COLLECTED Address: COMPOSITE START TIME DATE Report To: Day of Haufard 4 5 4 G=GRAB C=COMP 13 C. Purchase Order No.: Required Project Information: 13 13 13 13 MATRIX CODE COPY TO: COSCENIAGE Project Name: 0 ry -0 ORIGINAL 0 -(1) (2 -0 Section D Required Client Information 6 -0 wiff, have of Darced is um One Character per box, (A-Z, 0-91, -).
Samples IDs MUST BE UNIQUE 85 1119 0 0 = 10 1 bage of the service o ح. N 1 SAMPLE 0 £ ... これが Company ARCADES N -Required Client Information: C 1 Additional Comments: Requested Due Date/TAT: 6 2 Phone 742 - 45 IV 0 . 17 1 Phopaix 2 Section A Email To: 4 Ξ

MBTI

10

00 6 12

Attachment 2 Laboratory Analytical Report

March 21, 2016

David Howard ARCADIS 410 North 44th St. Suite 1000 Phoenix, AZ 85008

RE: Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Dear David Howard:

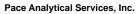
Enclosed are the analytical results for sample(s) received by the laboratory on March 05, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Justin L. Stock

Justin Stock


justin.stock@pacelabs.com

Project Manager

Enclosures

cc: Janisse Diaz, Arcadis Cassandra McCloud Marla Miller, ARCADIS U.S. Elvin Varela, ARCADIS

1000 Riverbend Blvd - Suite F St. Rose, LA 70087 (504)469-0333

CERTIFICATIONS

Project: FIBERS PUBLIC SUPPLY WELLS

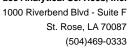
Pace Project No.: 2033391

New Orleans Certification IDs

California Env. Lab Accreditation Program Branch:

11277CA

Florida Department of Health (NELAC): E87595
Illinois Environmental Protection Agency: 0025721
Kansas Department of Health and Environment (NELAC):

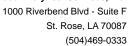

Louisiana Dept. of Environmental Quality (NELAC/LELAP):

02006

Pennsylviania Dept. of Env Protection (NELAC): 68-04202 Texas Commission on Env. Quality (NELAC):

T104704405-09-TX
U.S. Dept. of Agriculture Foreign Soil Import: P330-10-

00119



SAMPLE SUMMARY

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2033391001	TB-20160303	Water	03/03/16 00:00	03/05/16 08:55
2033391002	INF-20160303	Water	03/03/16 11:05	03/05/16 08:55
2033391003	EFF-20160303	Water	03/03/16 11:27	03/05/16 08:55
2033391004	EFF DUP-20160303	Water	03/03/16 11:27	03/05/16 08:55

SAMPLE ANALYTE COUNT

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
2033391001	TB-20160303	EPA 5030B/8260	MLS	56	PASI-N
2033391002	INF-20160303	EPA 5030B/8260	MLS	56	PASI-N
2033391003	EFF-20160303	EPA 5030B/8260	MLS	56	PASI-N
2033391004	EFF DUP-20160303	EPA 5030B/8260	MLS	56	PASI-N

1000 Riverbend Blvd - Suite F St. Rose, LA 70087 (504)469-0333

PROJECT NARRATIVE

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Method: EPA 5030B/8260

Description: 8260 MSV HALOETHERS

Client: ARCADIS

Date: March 21, 2016

General Information:

4 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/4566

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 2033391003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 207862)
 - Styrene
 - m&p-Xylene
- MSD (Lab ID: 207863)
 - Styrene
 - m&p-Xylene

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

(504)469-0333

ANALYTICAL RESULTS

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: TB-20160303	Lab ID: 203	3391001	Collected: 03/03/1	16 00:00	Received:	03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV HALOETHERS	Analytical Met	hod: EPA 5	030B/8260					
Acetone	ND	ug/L	4.0	1		03/16/16 16:20	67-64-1	
Acrolein	ND	ug/L	8.0	1		03/16/16 16:20	107-02-8	
Acrylonitrile	ND	ug/L	4.0	1		03/16/16 16:20) 107-13-1	
Benzene	ND	ug/L	1.0	1		03/16/16 16:20	71-43-2	
Bromodichloromethane	ND	ug/L	1.0	1		03/16/16 16:20	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/16/16 16:20	75-25-2	
Bromomethane	ND	ug/L	1.0	1		03/16/16 16:20	74-83-9	
-Butanone (MEK)	ND	ug/L	2.0	1		03/16/16 16:20	78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		03/16/16 16:20	75-15-0	
arbon tetrachloride	ND	ug/L	1.0	1		03/16/16 16:20	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/16/16 16:20	108-90-7	
Chloroethane	ND	ug/L	1.0	1		03/16/16 16:20	75-00-3	
Chloroform	ND	ug/L	1.0	1		03/16/16 16:20	67-66-3	
Chloromethane	ND	ug/L	1.0	1		03/16/16 16:20		
Dibromochloromethane	ND	ug/L	1.0	1		03/16/16 16:20		
Dibromomethane	ND	ug/L	1.0	1		03/16/16 16:20		
.1-Dichloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
,2-Dichloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
,1-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:20		
is-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:20		
ans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:20		
,2-Dichloropropane	ND	ug/L	1.0	1		03/16/16 16:20		
is-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 16:20		
ans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 16:20		
nflurane	ND	ug/L	1.0	1		03/16/16 16:20		
thylbenzene	ND	ug/L	1.0	1		03/16/16 16:20		
laloether 229	ND ND	ug/L	1.0	1		03/16/16 16:20		
laloether 406	ND	ug/L	1.0	1		03/16/16 16:20		
laloether 421	ND	ug/L	1.0	1		03/16/16 16:20		
laloether 427	ND	-	1.0	1		03/16/16 16:20		
		ug/L		1		03/16/16 16:20		
laloether 428 laloether 508	ND	ug/L	1.0	1				
	ND	ug/L	1.0	1		03/16/16 16:20		
laloether 528	ND	ug/L	1.0			03/16/16 16:20		
lalomar	ND	ug/L	1.0	1		03/16/16 16:20		
-Hexanone	ND	ug/L	2.0	1		03/16/16 16:20		
soflurane	ND	ug/L	1.0	1		03/16/16 16:20		
lethoxyflurane	ND	ug/L	1.0	1		03/16/16 16:20		-
lethylene Chloride	ND	ug/L	5.0	1		03/16/16 16:20		В
-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		03/16/16 16:20		
tyrene	ND	ug/L	1.0	1		03/16/16 16:20		
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
etrachloroethene	ND	ug/L	1.0	1		03/16/16 16:20		
oluene	ND	ug/L	1.0	1		03/16/16 16:20		
otal Haloether	ND	ug/L	1.0	1		03/16/16 16:20		
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
,1,2-Trichloroethane	ND	ug/L	1.0	1		03/16/16 16:20		
richloroethene	ND	ug/L	1.0	1		03/16/16 16:20	79-01-6	

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: TB-20160303	Lab ID: 203	3391001	Collected: 03/03/1	6 00:00	Received: 0	3/05/16 08:55 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Meth	nod: EPA 50	030B/8260					
Trichlorofluoromethane	ND	ug/L	1.0	1		03/16/16 16:20	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/16/16 16:20	96-18-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		03/16/16 16:20	76-13-1	
Vinyl chloride	ND	ug/L	1.0	1		03/16/16 16:20	75-01-4	
m&p-Xylene	ND	ug/L	2.0	1		03/16/16 16:20	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/16/16 16:20	95-47-6	
Surrogates								
Toluene-d8 (S)	100	%.	79-119	1		03/16/16 16:20	2037-26-5	
4-Bromofluorobenzene (S)	101	%.	68-124	1		03/16/16 16:20	460-00-4	
Dibromofluoromethane (S)	106	%.	72-126	1		03/16/16 16:20	1868-53-7	
Sample: INF-20160303	Lab ID: 203	3391002	Collected: 03/03/1	6 11:05	Received: 0	3/05/16 08:55 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
B260 MSV HALOETHERS	Analytical Meth	nod: EPA 50						
Acetone	10.0	ug/L	4.0	1		03/16/16 15:44	67-64-1	
Acrolein	ND	ug/L	8.0	1		03/16/16 15:44		
Acrylonitrile	ND ND	ug/L	4.0	1		03/16/16 15:44		
Benzene	ND	ug/L	1.0	1		03/16/16 15:44		
Bromodichloromethane	ND	ug/L	1.0	1		03/16/16 15:44	-	
Bromoform	ND	ug/L	1.0	1		03/16/16 15:44		
Bromomethane	ND ND	ug/L ug/L	1.0	1		03/16/16 15:44		
2-Butanone (MEK)	ND ND	-	2.0	1		03/16/16 15:44		
Carbon disulfide	ND ND	ug/L	1.0	1		03/16/16 15:44		
Carbon tetrachloride	ND ND	ug/L	1.0	1		03/16/16 15:44		
Chlorobenzene	ND ND	ug/L	1.0	1		03/16/16 15:44		
		ug/L		1				
Chloroethane	ND	ug/L	1.0			03/16/16 15:44		
Chloroform	ND	ug/L	1.0	1		03/16/16 15:44		
Chloromethane	ND	ug/L	1.0	1		03/16/16 15:44		
Dibromochloromethane	ND	ug/L	1.0	1		03/16/16 15:44	-	
Dibromomethane	ND	ug/L	1.0	1		03/16/16 15:44		
I,1-Dichloroethane	ND	ug/L	1.0	1		03/16/16 15:44		
I,2-Dichloroethane	ND	ug/L	1.0	1		03/16/16 15:44		
,1-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:44		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:44		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:44		
1,2-Dichloropropane	ND	ug/L	1.0	1		03/16/16 15:44		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 15:44		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 15:44		
Enflurane	2.0	ug/L	1.0	1		03/16/16 15:44		
Ethylbenzene	ND	ug/L	1.0	1		03/16/16 15:44	100-41-4	
Haloether 229	39.6	ug/L	1.0	1		03/16/16 15:44		
Haloether 406	1.6	ug/L	1.0	1		03/16/16 15:44		
Haloether 421	ND	ug/L	1.0	1		03/16/16 15:44		
Haloether 427	ND	ug/L	1.0	1		03/16/16 15:44		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: INF-20160303	Lab ID: 2	2033391002	Collected: 03/03/16	11:05	Received: 03	3/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV HALOETHERS	Analytical N	Method: EPA 50	030B/8260					
Haloether 428	ND	ug/L	1.0	1		03/16/16 15:4	4	
Haloether 508	67.5	-	1.0	1		03/16/16 15:4	4	
Haloether 528	ND	•	1.0	1		03/16/16 15:4	4	
Halomar	1.4	-	1.0	1		03/16/16 15:4	4	
2-Hexanone	ND	-	2.0	1		03/16/16 15:4		
soflurane	153	J	1.0	1		03/16/16 15:4		
Methoxyflurane	ND	J	1.0	1		03/16/16 15:4		
Methylene Chloride	ND	J	5.0	1		03/16/16 15:4		
4-Methyl-2-pentanone (MIBK)	ND	Ū	2.0	1		03/16/16 15:4		
Styrene (2.t)	ND	_	1.0	1		03/16/16 15:4		
1,1,2,2-Tetrachloroethane	ND	•	1.0	1		03/16/16 15:4		
Tetrachloroethene	7.1	J	1.0	1		03/16/16 15:4		
Toluene	ND	J	1.0	1		03/16/16 15:4		
Total Haloether	265	-	1.0	1		03/16/16 15:4		
	ND	_	1.0	1		03/16/16 15:4		
1,1,1-Trichloroethane		J		1		03/16/16 15:4		
1,1,2-Trichloroethane Trichloroethene	ND	J	1.0					
	ND	J	1.0	1		03/16/16 15:4		
Trichlorofluoromethane	ND	ū	1.0	1		03/16/16 15:4		
1,2,3-Trichloropropane	ND	J	1.0	1		03/16/16 15:4		
1,1,2-Trichlorotrifluoroethane	ND	J	1.0	1		03/16/16 15:4		
Vinyl chloride	ND	J	1.0	1		03/16/16 15:4		
m&p-Xylene	ND	J	2.0	1			4 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/16/16 15:4	4 95-47-6	
Surrogates	404	0.4	70.440			00/40/40 45 4	4 0007 00 5	
Toluene-d8 (S)	101		79-119	1		03/16/16 15:4		
4-Bromofluorobenzene (S)	103		68-124	1		03/16/16 15:4		
Dibromofluoromethane (S)	106	%.	72-126	1		03/16/16 15:4	4 1868-53-7	
Sample: EFF-20160303	Lab ID: 2	2033391003	Collected: 03/03/16	11:27	Received: 03	3/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical N	Method: EPA 50						
Acetone	19.1	ug/L	4.0	1		03/16/16 15:2	6 67-64-1	
Acrolein	ND		8.0	1		03/16/16 15:2		
Acrylonitrile	ND		4.0	1		03/16/16 15:2		
Benzene	ND	ū	1.0	1		03/16/16 15:2		
Bromodichloromethane	ND	Ū	1.0	1		03/16/16 15:2		
Bromoform	ND ND	-	1.0	1		03/16/16 15:2		
Bromomethane	ND	ū	1.0	1		03/16/16 15:2		
2-Butanone (MEK)	ND ND	ū	2.0	1		03/16/16 15:2		
Carbon disulfide	ND ND	ū	1.0	1		03/16/16 15:2		
		ū		1		03/16/16 15:2		
Carbon tetrachloride	ND	J	1.0			03/16/16 15:2		
Chlorobenzene	ND	J	1.0	1				
	ND	ug/L	1.0	1		03/16/16 15:2	b /5-UU-3	
Chloroethane Chloroform	ND	J	1.0	1		03/16/16 15:2	0 07 00 0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

(504)469-0333

ANALYTICAL RESULTS

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: EFF-20160303	Lab ID: 203	3391003	Collected: 03/03/1	6 11:27	Received: (03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV HALOETHERS	Analytical Met	nod: EPA 50	030B/8260					
Chloromethane	ND	ug/L	1.0	1		03/16/16 15:20	6 74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		03/16/16 15:20	5 124-48-1	
Dibromomethane	ND	ug/L	1.0	1		03/16/16 15:20	6 74-95-3	
1,1-Dichloroethane	ND	ug/L	1.0	1		03/16/16 15:20	5 75-34-3	
,2-Dichloroethane	ND	ug/L	1.0	1		03/16/16 15:20	5 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:20	5 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:20	5 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/16/16 15:20	5 156-60-5	
,2-Dichloropropane	ND	ug/L	1.0	1		03/16/16 15:20	6 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 15:20	5 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/16/16 15:20	5 10061-02-6	
Enflurane	ND	ug/L	1.0	1		03/16/16 15:20	5 13838-16-9	
Ethylbenzene	ND	ug/L	1.0	1		03/16/16 15:20	5 100-41-4	
Haloether 229	ND	ug/L	1.0	1		03/16/16 15:20	6	
Haloether 406	ND	ug/L	1.0	1		03/16/16 15:20	3	
Haloether 421	ND	ug/L	1.0	1		03/16/16 15:20	6	
laloether 427	ND	ug/L	1.0	1		03/16/16 15:20	6	
Haloether 428	ND	ug/L	1.0	1		03/16/16 15:20	3	
Haloether 508	ND	ug/L	1.0	1		03/16/16 15:20	6	
Haloether 528	ND	ug/L	1.0	1		03/16/16 15:20	6	
Halomar	ND	ug/L	1.0	1		03/16/16 15:20	6	
?-Hexanone	ND	ug/L	2.0	1		03/16/16 15:20	5 591-78-6	
soflurane	ND	ug/L	1.0	1		03/16/16 15:20	6	
Methoxyflurane	ND	ug/L	1.0	1		03/16/16 15:20	6 76-38-0	
Methylene Chloride	ND	ug/L	5.0	1		03/16/16 15:20	6 75-09-2	
I-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		03/16/16 15:20	6 108-10-1	
Styrene	ND	ug/L	1.0	1		03/16/16 15:20	6 100-42-5	M1
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/16/16 15:20	6 79-34-5	
- etrachloroethene	ND	ug/L	1.0	1		03/16/16 15:20	6 127-18-4	
Toluene Toluene	ND	ug/L	1.0	1		03/16/16 15:20	6 108-88-3	
otal Haloether	ND	ug/L	1.0	1		03/16/16 15:20	5	
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/16/16 15:20	6 71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1		03/16/16 15:20	6 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/16/16 15:20	6 79-01-6	
richlorofluoromethane	ND	ug/L	1.0	1		03/16/16 15:20	5 75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		03/16/16 15:20	96-18-4	
,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		03/16/16 15:20	6 76-13-1	
'inyl chloride	ND	ug/L	1.0	1		03/16/16 15:20	6 75-01-4	
n&p-Xylene	ND	ug/L	2.0	1		03/16/16 15:20	6 179601-23-1	M1
-Xylene	ND	ug/L	1.0	1		03/16/16 15:20		
Surrogates		ŭ						
oluene-d8 (S)	97	%.	79-119	1		03/16/16 15:20	6 2037-26-5	
I-Bromofluorobenzene (S)	102	%.	68-124	1		03/16/16 15:20	6 460-00-4	
Dibromofluoromethane (S)	106	%.	72-126	1		03/16/16 15:20	3 1868-53-7	

(504)469-0333

ANALYTICAL RESULTS

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: EFF DUP-20160303	Lab ID: 203	3391004	Collected: 03/03/1	6 11:27	Received:	03/05/16 08:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV HALOETHERS	Analytical Metl	nod: EPA 50	030B/8260					
Acetone	26.6	ug/L	4.0	1		03/16/16 16:02	2 67-64-1	
Acrolein	ND	ug/L	8.0	1		03/16/16 16:02	2 107-02-8	
Acrylonitrile	ND	ug/L	4.0	1		03/16/16 16:02	2 107-13-1	
Benzene	ND	ug/L	1.0	1		03/16/16 16:02	2 71-43-2	
Bromodichloromethane	ND	ug/L	1.0	1		03/16/16 16:02	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/16/16 16:02	2 75-25-2	
Bromomethane	ND	ug/L	1.0	1		03/16/16 16:02	2 74-83-9	
2-Butanone (MEK)	ND	ug/L	2.0	1		03/16/16 16:02	2 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		03/16/16 16:02	2 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		03/16/16 16:02	2 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/16/16 16:02		
Chloroethane	ND	ug/L	1.0	1		03/16/16 16:02		
Chloroform	ND	ug/L	1.0	1		03/16/16 16:02		
Chloromethane	ND	ug/L	1.0	1		03/16/16 16:02		
Dibromochloromethane	ND	ug/L	1.0	1		03/16/16 16:02		
Dibromomethane	ND	ug/L	1.0	1		03/16/16 16:02	-	
.1-Dichloroethane	ND	ug/L	1.0	1		03/16/16 16:02		
,2-Dichloroethane	ND	ug/L	1.0	1		03/16/16 16:02		
,1-Dichloroethene	ND	ug/L	1.0	1		03/16/16 16:02		
is-1,2-Dichloroethene	ND ND	ug/L ug/L	1.0	1		03/16/16 16:02		
rans-1,2-Dichloroethene	ND ND	_		1		03/16/16 16:02		
-	ND ND	ug/L	1.0 1.0	1		03/16/16 16:02		
,2-Dichloropropane	ND ND	ug/L	1.0	1		03/16/16 16:02		
is-1,3-Dichloropropene	ND ND	ug/L	1.0	1		03/16/16 16:02		
rans-1,3-Dichloropropene		ug/L						
Enflurane	ND	ug/L	1.0	1		03/16/16 16:02		
Ethylbenzene	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 229	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 406	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 421	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 427	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 428	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 508	ND	ug/L	1.0	1		03/16/16 16:02		
Haloether 528	ND	ug/L	1.0	1		03/16/16 16:02		
Halomar	ND	ug/L	1.0	1		03/16/16 16:02		
2-Hexanone	ND	ug/L	2.0	1		03/16/16 16:02	2 591-78-6	
soflurane	ND	ug/L	1.0	1		03/16/16 16:02		
Methoxyflurane	ND	ug/L	1.0	1		03/16/16 16:02		
Methylene Chloride	ND	ug/L	5.0	1		03/16/16 16:02		
-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		03/16/16 16:02		
Styrene	ND	ug/L	1.0	1		03/16/16 16:02		
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/16/16 16:02		
Tetrachloroethene	ND	ug/L	1.0	1		03/16/16 16:02	2 127-18-4	
oluene	ND	ug/L	1.0	1		03/16/16 16:02	2 108-88-3	
Total Haloether	ND	ug/L	1.0	1		03/16/16 16:02	2	
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/16/16 16:02	2 71-55-6	
I,1,2-Trichloroethane	ND	ug/L	1.0	1		03/16/16 16:02	2 79-00-5	
Frichloroethene	ND	ug/L	1.0	1		03/16/16 16:02		

ANALYTICAL RESULTS

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Sample: EFF DUP-20160303	Lab ID: 203	3391004	Collected: 03/03/1	6 11:27	Received: 03	3/05/16 08:55 I	Matrix: Water	•
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Meth	od: EPA 50	030B/8260					
Trichlorofluoromethane	ND	ug/L	1.0	1		03/16/16 16:02	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/16/16 16:02	96-18-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		03/16/16 16:02	? 76-13-1	
Vinyl chloride	ND	ug/L	1.0	1		03/16/16 16:02	2 75-01-4	
m&p-Xylene	ND	ug/L	2.0	1		03/16/16 16:02	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/16/16 16:02	95-47-6	
Surrogates								
Toluene-d8 (S)	94	%.	79-119	1		03/16/16 16:02	2 2037-26-5	
4-Bromofluorobenzene (S)	101	%.	68-124	1		03/16/16 16:02	2 460-00-4	
Dibromofluoromethane (S)	106	%.	72-126	1		03/16/16 16:02	1868-53-7	

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

QC Batch: MSV/4566 Analysis Method: EPA 5030B/8260
QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV

Associated Lab Samples: 2033391001, 2033391002, 2033391003, 2033391004

METHOD BLANK: 207860 Matrix: Water
Associated Lab Samples: 2033391001, 2033391002, 2033391003, 2033391004

_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	1.0	03/16/16 13:21	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	03/16/16 13:21	
1,1,2-Trichloroethane	ug/L	ND	1.0	03/16/16 13:21	
1,1,2-Trichlorotrifluoroethane	ug/L	ND	1.0	03/16/16 13:21	
1,1-Dichloroethane	ug/L	ND	1.0	03/16/16 13:21	
1,1-Dichloroethene	ug/L	ND	1.0	03/16/16 13:21	
1,2,3-Trichloropropane	ug/L	ND	1.0	03/16/16 13:21	
1,2-Dichloroethane	ug/L	ND	1.0	03/16/16 13:21	
1,2-Dichloropropane	ug/L	ND	1.0	03/16/16 13:21	
2-Butanone (MEK)	ug/L	ND	2.0	03/16/16 13:21	
2-Hexanone	ug/L	ND	2.0	03/16/16 13:21	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	2.0	03/16/16 13:21	
Acetone	ug/L	ND	4.0	03/16/16 13:21	
Acrolein	ug/L	ND	8.0	03/16/16 13:21	
Acrylonitrile	ug/L	ND	4.0	03/16/16 13:21	
Benzene	ug/L	ND	1.0	03/16/16 13:21	
Bromodichloromethane	ug/L	ND	1.0	03/16/16 13:21	
Bromoform	ug/L	ND	1.0	03/16/16 13:21	
Bromomethane	ug/L	ND	1.0	03/16/16 13:21	
Carbon disulfide	ug/L	ND	1.0	03/16/16 13:21	
Carbon tetrachloride	ug/L	ND	1.0	03/16/16 13:21	
Chlorobenzene	ug/L	ND	1.0	03/16/16 13:21	
Chloroethane	ug/L	ND	1.0	03/16/16 13:21	
Chloroform	ug/L	ND	1.0	03/16/16 13:21	
Chloromethane	ug/L	ND	1.0	03/16/16 13:21	
cis-1,2-Dichloroethene	ug/L	ND	1.0	03/16/16 13:21	
cis-1,3-Dichloropropene	ug/L	ND	1.0	03/16/16 13:21	
Dibromochloromethane	ug/L	ND	1.0	03/16/16 13:21	
Dibromomethane	ug/L	ND	1.0	03/16/16 13:21	
Enflurane	ug/L	ND	1.0	03/16/16 13:21	
Ethylbenzene	ug/L	ND	1.0	03/16/16 13:21	
Haloether 229	ug/L	ND	1.0	03/16/16 13:21	
Haloether 406	ug/L	ND	1.0	03/16/16 13:21	
Haloether 421	ug/L	ND	1.0	03/16/16 13:21	
Haloether 427	ug/L	ND	1.0	03/16/16 13:21	
Haloether 428	ug/L	ND	1.0	03/16/16 13:21	
Haloether 508	ug/L	ND	1.0	03/16/16 13:21	
Haloether 528	ug/L	ND	1.0	03/16/16 13:21	
Halomar	ug/L	ND	1.0	03/16/16 13:21	
Isoflurane	ug/L	ND	1.0	03/16/16 13:21	
m&p-Xylene	ug/L	ND	2.0	03/16/16 13:21	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

METHOD BLANK: 207860 Matrix: Water Associated Lab Samples: 2033391001, 2033391002, 2033391003, 2033391004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Methoxyflurane	ug/L	ND ND	1.0	03/16/16 13:21	
Methylene Chloride	ug/L	ND	5.0	03/16/16 13:21	B,Z3
o-Xylene	ug/L	ND	1.0	03/16/16 13:21	
Styrene	ug/L	ND	1.0	03/16/16 13:21	
Tetrachloroethene	ug/L	ND	1.0	03/16/16 13:21	
Toluene	ug/L	ND	1.0	03/16/16 13:21	
Total Haloether	ug/L	ND	1.0	03/16/16 13:21	
trans-1,2-Dichloroethene	ug/L	ND	1.0	03/16/16 13:21	
trans-1,3-Dichloropropene	ug/L	ND	1.0	03/16/16 13:21	
Trichloroethene	ug/L	ND	1.0	03/16/16 13:21	
Trichlorofluoromethane	ug/L	ND	1.0	03/16/16 13:21	
Vinyl chloride	ug/L	ND	1.0	03/16/16 13:21	
4-Bromofluorobenzene (S)	%.	103	68-124	03/16/16 13:21	
Dibromofluoromethane (S)	%.	106	72-126	03/16/16 13:21	
Toluene-d8 (S)	%.	100	79-119	03/16/16 13:21	

LABORATORY CONTROL SAMPLE	: 207861					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		50.3	101	62-131	
1,1,2,2-Tetrachloroethane	ug/L	50	50.2	100	15-179	
1,1,2-Trichloroethane	ug/L	50	48.9	98	58-144	
1,1,2-Trichlorotrifluoroethane	ug/L	50	48.3	97	38-121	
1,1-Dichloroethane	ug/L	50	49.6	99	63-129	
1,1-Dichloroethene	ug/L	50	47.5	95	51-139	
1,2,3-Trichloropropane	ug/L	50	49.6	99	13-187	
1,2-Dichloroethane	ug/L	50	49.0	98	57-148	
1,2-Dichloropropane	ug/L	50	48.8	98	66-128	
2-Butanone (MEK)	ug/L	50	47.7	95	32-183	
2-Hexanone	ug/L	50	52.3	105	36-170	
4-Methyl-2-pentanone (MIBK)	ug/L	50	51.0	102	26-171	
Acetone	ug/L	50	48.4	97	22-165	
Acrolein	ug/L	100	94.4	94	10-131	
Acrylonitrile	ug/L	50	48.5	97	18-149	
Benzene	ug/L	50	52.6	105	62-131	
Bromodichloromethane	ug/L	50	46.7	93	69-132	
Bromoform	ug/L	50	49.1	98	35-166	
Bromomethane	ug/L	50	50.1	100	34-158	
Carbon disulfide	ug/L	50	49.8	100	31-128	
Carbon tetrachloride	ug/L	50	50.3	101	54-144	
Chlorobenzene	ug/L	50	51.3	103	70-127	
Chloroethane	ug/L	50	48.5	97	17-195	
Chloroform	ug/L	50	45.7	91	73-134	
Chloromethane	ug/L	50	51.1	102	17-153	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

(504)469-0333

QUALITY CONTROL DATA

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

ABORATORY CONTROL SAMPLE:	207861					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
s-1,2-Dichloroethene	ug/L	50	48.4	97	68-129	
s-1,3-Dichloropropene	ug/L	50	53.9	108	72-138	
bromochloromethane	ug/L	50	47.0	94	49-146	
oromomethane	ug/L	50	47.7	95	56-145	
lurane	ug/L	50	48.7	97	56-135	
ylbenzene	ug/L	50	51.7	103	66-126	
oether 229	ug/L	50	47.1	94	62-123	
oether 406	ug/L	50	50.2	100	62-134	
oether 421	ug/L	50	49.1	98	70-128	
oether 427	ug/L	50	50.5	101	69-153	
oether 428	ug/L	50	50.3	101	70-134	
oether 508	ug/L	50	49.1	98	52-139	
oether 528	ug/L	50	52.4	105	48-157	
mar	ug/L	50	48.8	98	62-128	
urane	ug/L	50	48.4	97	61-132	
-Xylene	ug/L	100	105	105	65-129	
hoxyflurane	ug/L	50	49.9	100	72-124	
nylene Chloride	ug/L	50	48.7	97	46-168	
rlene	ug/L	50	53.0	106	65-124	
ene	ug/L	50	55.2	110	72-133	
achloroethene	ug/L	50	51.2	102	46-157	
ene	ug/L	50	51.3	103	69-126	
Haloether	ug/L		544			
s-1,2-Dichloroethene	ug/L	50	48.9	98	60-129	
s-1,3-Dichloropropene	ug/L	50	54.9	110	59-149	
loroethene	ug/L	50	51.5	103	67-132	
nlorofluoromethane	ug/L	50	60.5	121	39-171	
l chloride	ug/L	50	47.2	94	27-149	
romofluorobenzene (S)	%.			99	68-124	
omofluoromethane (S)	%.			99	72-126	
uene-d8 (S)	%.			99	79-119	

MATRIX SPIKE & MATRIX SPIR	KE DUPLIC	CATE: 20786	2		207863							
			MS	MSD								
		2033391003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	50	50	55.5	53.2	111	106	54-137	4	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	52.6	52.3	105	105	15-187	1	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	51.0	50.1	102	100	59-148	2	20	
1,1,2-Trichlorotrifluoroethane	ug/L	ND	50	50	50.6	50.7	101	101	40-117	0	20	
1,1-Dichloroethane	ug/L	ND	50	50	51.8	50.7	104	101	59-133	2	20	
1,1-Dichloroethene	ug/L	ND	50	50	49.9	48.8	100	98	44-146	2	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	51.6	50.7	103	101	14-199	2	20	
1,2-Dichloroethane	ug/L	ND	50	50	51.4	50.4	103	101	56-154	2	20	
1,2-Dichloropropane	ug/L	ND	50	50	52.3	51.3	105	103	62-135	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 20786	2		207863							
			MS	MSD								
		2033391003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
-Butanone (MEK)	ug/L	ND	50	50	49.8	51.4	98	101	20-205	3	20	
-Hexanone	ug/L	ND	50	50	51.7	53.6	103	107	25-189	4	20	
-Methyl-2-pentanone MIBK)	ug/L	ND	50	50	51.5	53.3	103	107	23-184	3	20	
cetone	ug/L	19.1	50	50	62.6	64.5	87	91	11-217	3	20	
Acrolein	ug/L	ND	100	100	47.4	46.0	47	46	10-142	3	20	
crylonitrile	ug/L	ND	50	50	47.9	49.3	96	99	20-164	3	20	
Benzene	ug/L	ND	50	50	56.8	54.5	114	109	52-141	4	20	
Bromodichloromethane	ug/L	ND	50	50	49.7	48.4	99	97	70-134	3	20	
romoform	ug/L	ND	50	50	48.7	47.8	97	95	37-171	2	20	
romomethane	ug/L	ND	50	50	54.7	54.7	109	109	34-155	0	20	
arbon disulfide	ug/L	ND	50	50	57.3	53.4	114	106	28-130	7	20	
arbon tetrachloride	ug/L	ND	50	50	55.1	51.8	110	104	48-146	6	20	
chlorobenzene	ug/L	ND	50	50	54.8	53.2	110	106	67-129	3	20	
Chloroethane	ug/L	ND	50	50	56.4	55.6	113	111	12-192	2	20	
Chloroform	ug/L	ND	50	50	49.6	48.5	99	97	66-143	2	20	
Chloromethane	ug/L	ND	50	50	66.1	66.8	132	133	14-155	1	20	
is-1,2-Dichloroethene	ug/L	ND	50	50	52.4	51.2	105	102	56-141	2	20	
s-1,3-Dichloropropene	ug/L	ND	50	50	55.3	53.7	111	107	70-139	3	20	
bibromochloromethane	ug/L	ND	50	50	49.3	48.0	98	96	50-150	3	20	
ibromomethane	ug/L	ND	50	50	50.9	49.4	102	99	58-153	3	20	
nflurane	ug/L	ND	50	50	54.0	50.9	108	102	63-126	6	20	
thylbenzene	ug/L	ND	50	50	53.5	50.6	107	101	57-135	6	20	
laloether 229	ug/L	ND	50	50	54.2	53.6	108	107	56-127	1	20	
laloether 406	ug/L	ND	50	50	54.8	52.3	110	107	68-128	5	20	
laloether 421	ug/L ug/L	ND	50	50	53.1	51.4	106	103	74-120	3	20	
laloether 427	-	ND ND	50	50	54.3	52.1	100	103	74-120 78-120	4	20	
	ug/L	ND ND						104			20	
laloether 428	ug/L		50	50	55.0	52.8	110		74-125	4		
laloether 508	ug/L	ND	50	50	53.7	52.5	107	105	28-156	2	20	
laloether 528	ug/L	ND	50	50	56.0	53.0	112	106	45-142	6	20	
lalomar	ug/L	ND	50	50	53.5	51.7	107	103	67-123	3	20	
soflurane	ug/L	ND	50	50	54.0	52.0	108	104	45-140	4	20	
n&p-Xylene	ug/L	ND	100	100	44.1	36.3	44	36	56-136	19	20	IVI1
Methoxyflurane	ug/L	ND	50	50	52.7	51.6	105	103	75-119	2	20	
Methylene Chloride	ug/L	ND	50	50	51.7	50.9	103	102	45-166	1	20	
-Xylene	ug/L	ND	50	50	47.0	39.8	94	80	57-133	17	20	
tyrene	ug/L	ND	50	50	1.4	1.2	3	2	58-144		20	M1
etrachloroethene	ug/L	ND	50	50	55.8	53.4	112	107	48-143		20	
oluene	ug/L	ND	50	50	53.9	50.2	108	100	59-136		20	
otal Haloether	ug/L	ND			595	574				4		
ans-1,2-Dichloroethene	ug/L	ND	50	50	54.4	52.0	109	104	57-132		20	
ans-1,3-Dichloropropene	ug/L	ND	50	50	56.4	55.5	113	111	59-154	2	20	
richloroethene	ug/L	ND	50	50	56.0	53.1	112	106	58-140	5	20	
richlorofluoromethane	ug/L	ND	50	50	66.0	64.4	132	129	24-175	3	20	
inyl chloride	ug/L	ND	50	50	42.8	40.8	86	82	21-150	5	20	
-Bromofluorobenzene (S)	%.						98	99	68-124			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 20786	2		207863						
		0000004000	MS	MSD	140	MOD	140	MOD	0/ D		
		2033391003	Spike	Spike	MS	MSD	MS	MSD	% Rec	Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD RPD	Qual
Dibromofluoromethane (S)	%.						98	100	72-126		
Toluene-d8 (S)	%.						98	98	79-119		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute


LABORATORIES

PASI-N Pace Analytical Services - New Orleans

ANALYTE QUALIFIERS

Date: 03/21/2016 08:29 AM

- B Analyte was detected in the associated method blank.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- Methylene chloride is a common laboratory contaminant. Results for this analyte should be considered estimated unless the amount found in the sample is 3 to 5 times higher than that found in the method blank.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: FIBERS PUBLIC SUPPLY WELLS

Pace Project No.: 2033391

Date: 03/21/2016 08:29 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2033391001	TB-20160303	EPA 5030B/8260	MSV/4566		
2033391002	INF-20160303	EPA 5030B/8260	MSV/4566		
2033391003	EFF-20160303	EPA 5030B/8260	MSV/4566		
2033391004	EFF DUP-20160303	EPA 5030B/8260	MSV/4566		

JO#: 2033391

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

LabiD Pace Project Number □ DRINKING WATER □ Other (まれん) Ж SAMPLE CONDITION ONI OMN ONC MIN OUTONIO LEIPISON Q_{N} N/A N/A Page: 300 REGULATORY AGENCY □ GROUND WATER 3-3-16 14:00 315/16 855 DATE TIME ĕ <u>z</u> ပ္ပ | □ RCRA Requested Analysis: Filtered (Y/N) □GA HO ACCEPTED BY / AFFILIATION Marie SITE LOCATION TedtC □ NPDES Methanol □ UST EO2826N Preservatives HOgN HC €оин [⊅]OS^ZH Unpreserved CONTAINERS N 4 OĿ SAMPLE TEMP AT COLLECTION 16 85 ct Company Name: TIME 90X(|4/189/20| COMPOSITE END/GRAB 17-67-61 FOI 11 10 11 P. P. S. J. 11.77 E 13 17 1 1 1 1 J Pace Profile #: | 172 RELINQUISHED P./ / AFFILIATION DATE Pace Quote Reference: Pace Project Manager: ろいか。 かいとん Section C Invoice Information: 08-13-N 03-153-1E DATE Attention: COLLECTED Address: COMPOSITE START DATE COPY TO: CASENAGE INC 4 Report To: SAMPLE TYPE 9AMOD=D BAMD=D ک Purchase Order No.: Required Project Information: 13 1.3 MATRIX CODE OFIGINAL .__ Section D Required Client Information Final To: 1 Days of Dargelin Com One Character per box. (A-Z, 0-9 / .-)
Samples IDs MUST BE UNIQUE 25 111 9 N SAMPLEID ح. G. [19 Ö ----..... 7 **C**/ Required Client Information: Company ARCAUL Requested Due Date/TAT: Additional Comments: \overline{z} Phone 74 -45 W 6 c) Philippin L. Section A 9 10 8 6 # WELL 2

bade 15 ot 15 be For instructions

ALLQ020rev.3,31Mar05

sealed Cooler

eneroak

eoj uo

DATE Signed (MMV/D)

SAMPLER NAME AND SIGNATURE

SIGNATURE of SAMPLER

PRINT Name of SAMPI

4eceived

O^o ni qmeT

WO#: 2033391

PM: JLS

Due Date: 03/21/16

Sample Condition Upon Re

CLIENT: 20-CHEV-ARC ARCADIS

	Jaili	Sample Condition of					,pon ite			
Pace Analytical 1000 Riverbend. Blvd., Suit St. Rose, LA 70087		∍F			-	Proje	ct #:	20		
Courier: Pace Courier	Hired Courier	☑ Fed	Χ	□ UP	s		ΗL	□ USPS □ Customer □ Other		
custody Seal on Cooler/Box Prese	nt: [see Co	OC]_						Custody Seals intact: □Yes □No		
herometer	IR6	Type o	f Ice:	(N	/et)	Blue N	one	Samples on ice: [see COC]		
Cooler Temperature: [see COC]	Temp	should	be a	bove fr	eezin	ng to 6°C		Date and Initials of person examining contents:		
emp must be measured from Tempera	ature blank when pre	esent			Com	ments:				
emperature Blank Present"?		□Yes	JNo.	□n/a	1					
Chain of Custody Present:		☑Yes I	□No	□n/a	2					
Chain of Custody Complete:		Q es I	□No	□n/a	3					
hain of Custody Relinquished:		□ Yes □	□No	□N/A	4					
ampler Name & Signature on CO	C:	es	□No	□N/A	5					
amples Arrived within Hold Time:		□Yes	□No	□n/a	6					
ufficient Volume:		☑Yes │	□No	□N/A	7					
correct Containers Used:		Yes	□N□	□n/A	8					
iltered vol. Rec. for Diss. tests		□Yes		□N/A	9					
ample Labels match COC:		□xes	□No	□n/a	10					
Il containers received within mana recautionary and/or expiration dat		□∕es	□No	□n/a	11					
all containers needing chemical pre een checked (except VOA, colifor		□Yes	□No		12					
all containers preservation checked ompliance with EPA recommenda		□Yes	□No	□ X IA	13			oreserative added? □Yes □No cord lot no.: HNO3 H2SO4		
leadspace in VOA Vials (>6mm):		□Yes	ΠNο.	□n/A	14					
rip Blank Present:		Yes	□No		15	· · ·				
Client Notification/ Resolution:										
Person Contacted:								Date/Time:		
Comments/ Resolution:										

Attachment 3 Sampling and Monitoring Field Form

Groundwater Extraction and Treatment System (GWETS) Sampling and Monitoring Field Form Fibers Public Supply Wells Superfund Site Guayama, Puerto Rico

Collection Date	Sample ID	Collection Time	Sampler's Initials	
03/0311	TB-2016 03021	LAR	LAD	
03/03/16	INF-2016 0303	lins	EUR	
13/13/16	FFF-20160303	1127	EUR	
03/03/11	EFF DUP- 2016 WAZ	1127	#UR	
03/03/12	EFFMS - 20/60303	1127	EUR	
03/03/14	EFFMSD _ 20160303	1127	FAIR	

GWETS Operational Data at Sample Collection

Extraction Wells

RW-2	128,7	gpm
RW-4	147.9	gpm
RW-5	47.7	gpm

Compound Treatment System

Influent Flow Rate (FIT-101)	332.	gpm
Effluent Flow Rate (FIT-301)	426,2	gpm
Blower (FIT-201A)	2446	cfm
Influent Flow Pressure (PIT-101)	3.5	psi
Effluent Flow Pressure (PIT-301)	22.3	psi
pH (pHIT-201A)	8.1	

Notes:

gpm = gallons per minute cfm = cubic feet per minute psi = pounds per square inch